Consulting
& Publishing
Table of Contents:
Preface i  
Elementary Solution Methods for Ordinary Differential Equations 1  
1.1  Euler's Multiplier 5  
1.2  Autonomous Systems 8  
1.2.1  Class of Examples 8  
1.2.2  State Space of a System of Two Homogeneous Real 1st Order Differential Equations 12  
1.3  On the Stability of Equilibrium Positions 16  
Boundary Value Problems of Ordinary Differential Equations 21  
2.1  The General Linear Boundary Value Problem 22  
2.1.1  Uniqueness Criterion 23  
2.1.2  Green's Function for the General Semi-homogeneous (Linear) Boundary Value Problem 26  
2.2  Vibrations of a String 29  
2.2.1  d'Alembert's Solution Ansatz 29  
2.2.2  Fourier's Solution Method 31  
Inversive Geometry and Number Sphere 33  
3.1  The Cross-ratio 36  
3.1.1  The Rational Functions as Mapping of the Number Sphere \(\mathbb{P}\) in Itself 38  
3.2  A Class \(\mathcal{H}\) of Rational Functions 39  
3.2.1  Elementary Properties of \(\mathcal{H}\) 39  
3.2.2  Partial Fraction Decomposition of the Function \(h(z) \in \mathcal{H}\) 40  
3.2.3  Division Algorithm for Functions in \(\mathcal{H}\) 41  
3.2.4  Application: The Stability Criterion 42  
Holomorphic or Analytic Functions 45  
4.1  Geometric Interpretation of Holomorphy 46  
4.2  Holomorphy and Cauchy-Riemann Differential Equations 47  
4.2.1  Harmonic Functions 48  
4.2.2  Transplantation of Harmonic Functions 50  
4.3  Power Series, the Basic Example of Holomorphic Functions 52  
4.3.1  Theorem on the Holomorphy of Power Series 53  
Integration of Complex-valued Functions 55  
5.1  Integral and Primitive Function 56  
5.2  Cauchy's Integral Formula 58  
5.2.1  Theorem on Taylor Expansion of Holomorphic Functions 58  
5.2.2  Liouville's Theorem 60  
5.3  Identity Theorem for Analytic Functions 61  
5.3.1  Theorem about the Zeros of Analytic Functions 61  
5.3.2  Cauchy's Integral Formula for \(z = z_{0}\) 62  
5.3.3  Principle of Maximum and Minimum for Analytic Functions 63  
5.4  The Poisson Integral Formula 65  
5.4.1  Solution of Dirichlet's Boundary Value Problem for a Circular Disk 66  
Extending the Theory of Analytic Functions 69  
6.1  The Holomorphic Logarithm 69  
6.2  The Winding Number 72  
6.2.1  General Version of Cauchy's Integral Formula 73  
6.3  General Version of Cauchy's Integral Theorem 75  
6.3.1  Existence of Global Primitive Functions 76  
6.3.2  Isolated Singularities 77  
6.3.3  A Formula for Residues 79  
6.3.4  Logarithmic Derivatives 80  
6.4  Residue Theorem 81  
6.4.1  Classification of Isolated Singularities 82  
6.4.2  The Zeros- and Poles-counting Integral 84  
6.4.3  Ronché's Theorem 84  
Applications of the Residue Theorem 87  
7.1  Applications I 87  
7.2  Applications II 89  
7.3  Applications III 94  

©  ATICE LLC  2022